Article

Diastereoselective Intermolecular Radical Addition to Nitrones

Masafumi Ueda,[†] Hideto Miyabe,[‡] Masako Teramachi,[†] Okiko Miyata,[†] and Takeaki Naito^{*,†}

Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan, and Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

taknaito@kobepharma-u.ac.jp

Received March 25, 2005

The intermolecular radical addition to chiral nitrones 2, 4, 5, and 16 was studied. The isopropyl radical addition to Oppolzer's camphorsultam derivative 2 of glyoxylic nitrone proceeded with excellent diastereoselectivity to give the desired isopropylated product **3a** accompanied by the diisopropylated product 3b. A high degree of stereocontrol in the reaction of cyclic nitrone 4 was achieved. The ethyl radical addition to nitrone 4 with triethylborane afforded the desired ethylated product 9a accompanied by the diethylated product 10a and the ethylated nitrone 11a. To evaluate the utility of cyclic nitrone 4, several alkyl radicals were employed in the addition reaction, which afforded the alkylated products 9b-d with excellent diastereoselectivities. In the presence of $Mg(ClO_4)_2$, the ethyl radical addition to BIGN 16 afforded selectively syn isomers. In contrast, the alkyl radical addition to 16 took place even in the absence of Lewis acid to give anti isomers.

Introduction

The carbon-nitrogen double bond has attracted significant attention as an excellent radical acceptor.¹ Compared with the extensive investigations into radical cyclization of imine derivatives,^{2,3} the intermolecular radical addition to imines has not been widely studied. Therefore, the development of intermolecular carboncarbon bond-forming radical reactions of imines is a subject of current interest.4

Hart's group reported the first study on the intermolecular alkyl radical addition to the sterically less hindered formaldoxime ether.⁵ Recently, the intermolecular radical-mediated acylation using α -sulforyl oxime ethers has been reported by the research group of Kim.⁶ We have also reported that the intermolecular radical addition reactions to a wide range of aldoxime ethers proceeded smoothly in the presence of BF₃·OEt₂.⁷ Additionally, Bertrand's and our groups have independently reported the diastereofacial control in intermolecular radical addition to glyoxylic imine derivatives for the synthesis of α -amino acids.^{8,9} More recently,

Kobe Pharmaceutical University.

[‡] Kyoto University.

⁽¹⁾ For reviews, see: (a) Miyabe, H.; Miyata, O.; Naito, T. J. Synth. Org. Chem., Jpn. 2002, 60, 1087. (b) Naito, T. Heterocycles 1999, 50, 505. (c) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543. (d) Giese, B.; Kopping, B.; Göbel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F. Org. React. (N.Y.) 1996, 48, 301.

⁽²⁾ For our examples of the radical cyclization of oxime ethers and hydrazones, see: (a) Miyabe, H.; Ueda, M.; Fujii, K.; Nishimura, A.; Naito, T. J. Org. Chem. **2003**, 68, 2003. (b) Ueda, M.; Miyabe, H.; Nishimura, A.; Miyata, O.; Takemoto, Y.; Naito, T. *Org. Lett.* **2003**, *5*, 3835. (c) Miyabe, H.; Nishiki, A.; Naito, T. *Chem. Pharm. Bull.* **2003**, 51, 100. (d) Miyabe, H.; Fujii, K.; Tanaka, H.; Naito, T. Chem. Commun. 2001, 831. (e) Miyabe, H.; Fujii, K.; Goto, T.; Naito, T. Org. Lett. 2000, 2, 4071. (f) Miyabe, H.; Torieda, M.; Inoue, K.; Tajiri, K.; Kiguchi, T.; Naito, T. J. Org. Chem. 1998, 63, 4397.

<sup>Naito, T. J. Org. Chem. 1998, 63, 4397.
(3) For some selected examples, see: (a) Friestad, G. K. Org. Lett.
1999, 1, 1499. (b) Zhang, J.; Clive, D. L. J. J. Org. Chem. 1999, 64, 770. (c) Keck, G. E.; Wager, T. T.; McHardy, S. F. J. Org. Chem. 1998, 63, 9164. (d) Iserloh, U.; Curran, D. P. J. Org. Chem. 1998, 63, 4711.
(e) Boiron, A.; Zillig, P.; Faber, D.; Giese, B. J. Org. Chem. 1998, 63, 5877. (f) Marco-Contelles, J.; Balme, G.; Bouyssi, D.; Destabel, C.;</sup> Henriet-Bernard, C. D.; Grimaldi, J.; Hatem, J. M. J. Org. Chem. **1997**, 62, 1202. (g) Noya, B.; Alonso, R. Tetrahedron Lett. **1997**, 38, 2745. (h) Booth, S. E.; Jenkins, P. R.; Swain, C. J. J. Chem. Soc., Chem. Commun. 1991, 1248.

⁽⁴⁾ For reviews, see: (a) Miyabe, H.; Ueda, M.; Naito, T. Synlett. 2004, 1140. (b) Friestad, G. K. Tetrahedron 2001, 57, 5461. (b) Miyabe,

⁽⁵⁾ Hart, D. J.; Seely, F. L. J. Am. Chem. Soc. 1988, 110, 1633.
(6) (a) Kim, S.; Lee, I. Y.; Yoon, J.-Y.; Oh, D. H. J. Am. Chem. Soc. 1997, 119, 1996, 118, 5138. 5982. (c) Ryu, I.; Kuriyama, H.; Minakata, S.; Komatsu, M.; Yoon, J.-Y.; Kim, S. J. Am. Chem. Soc. 1999, 121, 12190.

^{(7) (}a) Miyabe, H.; Shibata, R.; Ushiro, C.; Naito, T. Tetrahedron Lett. **1998**, 39, 631. (b) Miyabe, H.; Shibata, R.; Sangawa, M.; Ushiro, C.; Naito, T. Tetrahedron **1998**, *54*, 11431. (c) Miyabe, H.; Fujii, K.; Naito, T. Org. Lett. **1999**, *1*, 569. (d) Miyabe, H.; Fujii, K.; Naito, T. Org. Biomol. Chem. **2003**, *1*, 381.

⁽⁸⁾ Bertrand's group recently reported their studies on the radical addition to glyoxylic imines. See: (a) Bertrand, M. P.; Feray, L.; Nouguier, R.; Stella, L. Synlett **1998**, 780. (b) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. Synlett 1999, 1148. (c) Bertrand, M. P.; Feray, L.; Nouguier, R.; Perfetti, P. J. Org. Chem. 1999, 64, 9189.

Friestad's group reported the diastereo- and enantioselective radical additions to acylhydrazone.^{10,11}

Nitrones are well-known to be reactive substrates for the 1,3-dipolar cycloaddition reaction, nucleophilic addition of organometallic reagents, and so on.^{12,13} Although nitrones have also evolved as a useful trap for short-lived reactive radicals,¹⁴ synthetically useful radical reactions of nitrones are not available.¹⁵ We have investigated the viability of nitrones as radical acceptors and recently reported the highly diastereoselective radical addition to chiral nitrone for the asymmetric synthesis of α -amino acids.¹⁶ As a part of our program directed toward the screening of reactive imino radical acceptors,^{17,18} we now describe full details of a radical reaction of chiral nitrones.

Results and Discussion

Diastereoselective Radical Addition to Nitrone Bearing Oppolzer's Camphorsultam. As a preliminary experiment, we investigated the radical addition to

(10) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329.
(b) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2001, 123, 9922. (c) Friestad, G. K.; Shen, Y.; Ruggles, E. L. Angew. Chem., Int. Ed.. 2003, 42, 5061.

(11) For other examples, see: (a) Risberg, E.; Fischer, A.; Somfai,
P. Chem. Commun. 2004, 2088. (b) Singh, N.; Anand, R. D.; Trehan,
S. Tetrahedron Lett. 2004, 45, 2911. (c) Fernández, M.; Alonso, R. Org.
Lett. 2003, 5, 2461. (d) Yamada, K.; Yamamoto, Y.; Tomioka, K. Org.
Lett. 2003, 5, 1797. (e) Yamada, K.; Fujihara, H.; Yamamoto, Y.; Miwa,
Y.; Taga, T.; Tomioka, K. Org. Lett. 2001, 3, 1985. (g) Russell, G. A.; Wang, L.;
Rajaratnam, R. J. Org. Chem. 1996, 61, 8988.

(12) For reviews, see: (a) Lombardo, M.; Trombini, C. Synthesis
2000, 759. (b) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synthesis 2000, 442. (c) Osborn, H. M. I.; Gemmell, N.; Harwood: L. M. J. Chem. Soc., Perkin Trans. 1 2002, 2419.

(13) For 1,3-dipolar cycloaddition reactions of chiral nitrones prepared from L-phenylananine and glyoxylic acid, see: (a) Tamura, O.; Gotanda, K.; Terashima, R.; Kikuchi, M.; Miyawaki, T.; Sakamoto, M. *Chem. Commun.* **1996**, 1861. (b) Tamura, O.; Kuroki, T.; Sakai, Y.; Takizawa, J.; Yoshino, J.; Morita, Y.; Mita, N.; Gotanda, K.; Sakamoto M. *Tetrahedron Lett.* **1999**, 40, 895. (c) Tamura, O.; Shiro, T.; Toyao, A.; Ishibashi, H. *Chem. Commun.* **2003**, 2678.

(14) For some examples, see: (a) Becker, D. A. J. Am. Chem. Soc. **1996**, 118, 905. (b) Park, Y.-T.; Kim, K.-W. J. Org. Chem. **1998**, 63, 4494.

(15) For recent reports on the SmI₂-induced radical coupling reaction of nitrones, see: (a) Masson, G.; Py, S.; Vallée, Y. Angew. Chem., Int. Ed. **2002**, 41, 1772. (b) Masson, G.; Cividino, P.; Py, S.; Vallée, Y. Angew. Chem., Int. Ed. **2003**, 42, 2265. (c) Riber, D.; Skrydstrup, T. Org. Lett. **2003**, 5, 229. (d) Zhong, Y.-W.; Xu, M.-H.; Lin, G.-Q. Org. Lett. **2004**, 6, 3953. (e) Chavarot, M.; Rivard, M.; Rose-Munch, F.; Rose, E.; Py, S. Chem. Commun. **2004**, 2330.

(16) Ueda, M.; Miyabe, H.; Teramachi, M.; Miyata, O.; Naito, T. Chem. Commun. 2003, 426.

(17) We reported that *N*-sulfonylimines have evolved as a useful radical acceptor toward nucleophilic carbon radicals. See: Miyabe, H.; Ueda, M.; Naito, T. *Chem. Commun.* **2000**, 2059.

(18) We recently reported the radical reaction of ketimines prepared from *o*-hydroxy aniline. See: Miyabe, H.; Yamaoka, Y.; Takemoto, Y. *Synlett* **2004**, 2597.

SCHEME 1

		yield $(\%)^a$			selectivity
entry	conditions	3a	3b	3c	of $\mathbf{3a}^{b}$
1^c	<i>i</i> -PrI (30 equiv) in benzene	28	7	16	>95% de
2^c	<i>i</i> -PrI (90 equiv) in benzene	43	12	9	>95% de
3^d	<i>i</i> -PrI: benzene (3:1)	47	18	7	>95% de

^{*a*} Isolated yield. ^{*b*} Diastereoselectivities were determined by ¹H NMR analysis. ^{*c*} Reactions of **2** were carried out with *i*-PrI (30 or 90 equiv) and Et₃B (5.0 equiv) in boiling benzene. ^{*d*} Reaction of **1** was carried out with Et₃B (5.0 equiv) in boiling *i*-PrI–benzene (3: 1, v/v).

glyoxylic nitrone **2**, because its reactivity toward the nucleophilic carbon radical would be enhanced by the neighboring electron-withdrawing substituent (Scheme 1). The auxiliary of choice was Oppolzer's camphorsultam, since it had shown good characteristics in our previous work on radical reactions of oxime ether and hydrazone.⁹

Condensation of hemiacetal 1^{19} with *N*-benzylhydroxylamine proceeded in the presence of $CaCl_2$ to give the unstable nitrone 2 as an E/Z mixture after being stirred at 20 °C for 24 h. The nitrone 2 could not be easily isolated and hence was used in a crude state, after simple filtration to remove CaCl₂. To avoid the use of the commonly used toxic tin reagents, we have explored tinfree, iodine atom-transfer reactions.^{11,13} Et₃B was used as a radical initiator for isopropyl radical addition to 2; formation of the ethylated byproduct **3c** was shown to be dependent on the reaction temperature. Thus, changing the temperature from 20 °C to reflux in benzene led to a decrease in the ratio of ethylated byproduct 3c to the desired isopropylated products 3a and 3b. A similar trend has been observed in our recent studies on the radical reaction of oxime ethers.²⁰ The reaction with isopropyl iodide (30 equiv) in boiling benzene proceeded within 30 min to give the isopropylated product 3a in 28% yield, accompanied by a 7% yield of the C- and O-diisopropylated product 3b and a 16% yield of the ethylated product 3c (Table 1, entry 1). A high degree of diastereoselectivity was attained even at the high reaction temperature. The diastereomeric purity of **3a** was found to be not less than 95% de by ¹H NMR analysis.²¹ As the best result, the predominant formation of desir-

^{(9) (}a) Miyabe, H.; Ushiro, C.; Naito, T. Chem. Commun. 1997, 1789.
(b) Miyabe, H.; Fujishima, Y.; Naito, T. J. Org. Chem. 1999, 64, 2174.
(c) Miyabe, H.; Yoshioka, N.; Ueda, M.; Naito, T. J. Chem. Soc., Perkin Trans. 1 1998, 3659. (d) Miyabe, H.; Ueda, M.; Yoshioka, N.; Naito, Synlett 1999, 465. (e) Miyabe, H.; Ushiro, C.; Ueda, M.; Yamakawa, K.; Naito, T. J. Org. Chem. 2000, 65, 176. (f) Miyabe, H.; Ueda, M.; Naito, T. J. Org. Chem. 2000, 65, 5043. (g) Miyabe, H.; Konishi, C.; Naito, T. Org. Lett. 2002, 4, 131. (i) Miyabe, H.; Nishimura, A.; Naito, T. Org. Lett. 2002, 4, 131. (i) Miyabe, H.; Nishimura, A.; Ueda, M.; Naito, T. Chem. Commun. 2002, 1454. (j) Miyabe, H.; Nishimura, A.; Fujishima, Y.; Naito, T. Tetrahedron 2003, 59, 1901.
(k) Ueda, M.; Miyabe, H.; Nishimura, A.; Sugino, H.; Naito, T. Tetrahedron: Asymmetry 2003, 14, 2857. (l) Miyabe, H.; Niehimura, A.; Naito, T. Org. Biomol. Chem. 2004, 60, 4227. (m) Miyabe, H.; Naito, T. Org. Biomol. Chem. 2004, 5, 1267. (n) Ueda, M.; Miyabe, H.; Naito, T. Org. Biomol. Chem. 2005, 3, 1124. (10) (a) Friestad, G. K.; Qin, J. J. Am. Chem. Soc. 2000, 122, 8329.

^{(19) (}a) Bauer, T.; Jezewski, A.; Chapuis, C.; Jurczak, J. Tetrahedron: Asymmetry **1996**, 7, 1385. (b) Oppolzer, W.; Chapuis, C.; Bernardinelli, G. Helv. Chim. Acta **1984**, 67, 1397.

⁽²⁰⁾ Miyabe, H.; Ueda, M.; Yoshioka, N.; Yamakawa, K.; Naito, T. *Tetrahedron* **2000**, *56*, 2413.

ably isopropylated products **3a** and **3b** was achieved in the reaction by using *i*-PrI–benzene (3:1, v/v) as a solvent (entry 3). Treatment of nitrone **2** with Et₃B in boiling *i*-PrI–benzene (3:1, v/v) for 30 min gave the product **3a** in 47% yield as a single diastereomer (entry 3).

In this reaction, Et_3B worked as not only a radical initiator but also a chain transfer agent to trap the intermediate radical **A** to give an adduct **B** and a chain-propagating ethyl radical. Therefore, an excess amount of Et_3B was required for the present reaction (Scheme 2).^{22,23}

Diastereoselective Radical Addition to Cyclic and Acyclic Nitrones. For the synthesis of various types of α -amino acids, we next investigated the reaction of cyclic nitrone 4 (Scheme 3). For comparison, the reaction of acyclic nitrone 5 was also studied. The acyclic nitrones 2 and 5 exist as a mixture of *E*- and *Z*-isomers concerning the geometry of the C–N double bond, which were easily isomerized. In marked contrast to acyclic nitrones, the cyclic nitrone 4 has the advantage of increased rigidity and stability.

As shown in Scheme 3, the nitrones 4 and 5 were prepared. The amino alcohol 6, which was prepared from

TABLE 2. Ethyl Radical Addition to Cyclic Nitrone 4

			yield (%) ^a			selectivity
entry	solvent	$T\left(^{\circ}\mathrm{C}\right)$	9a	10a	11a	of $\mathbf{9a}^{b}$
$egin{array}{c} 1^c \ 2^c \ 3^c \end{array}$	$\mathrm{CH}_2\mathrm{Cl}_2\ \mathrm{CH}_2\mathrm{Cl}_2\ \mathrm{benzene}$	$^{+20}_{-78}$ reflux	50 36 55	$32 \\ 22 \\ 15$	trace 14 trace	>95% de >95% de >95% de
$rac{4^d}{5^d}$	${ m benzene} { m CH}_2{ m Cl}_2$	$\substack{+20\\-78}$	$\begin{array}{c} 50 \\ 64 \end{array}$	trace trace	trace 16	>95% de >95% de

 a Isolated yield. b Diastereoselectivities were determined by 1H NMR analysis. c Reactions of 4 were carried out with Et_3B (5.0 equiv) in the presence of 20 mL of O_2 under N_2 atmosphere. d Reactions of 4 were carried out with Bu_3SnH (1.2 equiv) and Et_3B (5.0 equiv) in the presence of 20 mL of O_2 under N_2 atmosphere.

(1S,2R)-diphenylaminoethanol,²⁴ was protected as the TBDMS derivative **7** in 98% yield. Next, the oxidation of secondary amine **7** to nitrone **5** was investigated under several reaction conditions. Methyltrioxorhenium(VII) (MTO)-catalyzed oxidation of **7** with a urea-hydrogen peroxide complex (UHP) was effective for preparing the conjugated nitrone **5** as an E/Z mixture.²⁵ According to Williams' method,²⁴ the amino alcohol **6** was protected as the *N*-Boc derivative, which was then treated with *p*-TsOH in benzene at reflux to give the morpholinone **8a** in 61% yield from **6**. Deprotection of the *N*-tert-butoxycarbonyl group followed by oxidation with MTO and UHP gave the cyclic nitrone **4**.²⁶

The addition of an ethyl radical to cyclic nitrone 4 was studied by using $Et_{3}B$ (5.0 equiv) as an ethyl radical source under several reaction conditions (Scheme 4). At first, the reaction was carried out in the presence of 20 mL of O_2 under N_2 atmosphere (Table 2). As expected, the reaction of **4** in CH₂Cl₂ proceeded smoothly at 20 °C to give the desired product 9a in 50% yield and the diethylated product 10a in 32% yield (entry 1). Changing the reaction temperature from 20 to -78 °C led to an increase in the formation of undesired nitrone 11a (entry 2). In contrast, treatment of 4 with Et_3B in boiling benzene afforded the desired product 9a in 55% yield, along with 15% yield of the diethylated product 10a (entry 3). A high degree of diastereoselectivity was obtained even at the elevated reaction temperature. The undesired nitrone 11a would be obtained as a result of a disproportionation reaction of intermediate radical C (Scheme 5). To suppress the formation of the undesired products 10a and 11a, Bu₃SnH was employed as a hydride atom donor (entries 4 and 5). In the presence of Bu₃SnH, the formation of 10a was diminished remarkably leading to 64% yield of 9a after being stirred in

⁽²¹⁾ The absolute configuration of **3a** was determined to be R by conversion into amino acid derivatives: reductive cleavage of the N–O bond with Zn in acidic condition followed by hydrogenolysis of the benzyl group afforded the known amino acid derivative. See ref 9e.

⁽²²⁾ The reaction of nitroxide radical with triethylborane is presumably a slow process and the formation of diisopropylated product 3b may result from the accumulation of the nitroxide radical in the reaction mixture due to the persistent radical effect.

⁽²³⁾ For an example of the reaction of nitrones with Et₃B, see: Hollis, W. G., Jr.; Smith, P. L.; Hood, D. K.; Cook, S. M. J. Org. Chem. **1994**, 59, 3485.

^{(24) (}a) Williams, R. M.; Shinclair, P. J.; Zhai, D.; Chen, D. J. Am. Chem. Soc. 2000, 110, 1547. (b) Williams, R. M.; Zhai, W.; Aldous, D. J.; Aldous, S. C. J. Org. Chem. 1992, 57, 6527.

⁽²⁵⁾ Goti, A.; Nannelli, L. Tetrahedron Lett. 1996, 37, 6025.

⁽²⁶⁾ Baldwin, S. W.; Young, B. G.; McPhail, A. T. Tetrahedron Lett. **1998**, *39*, 6819.

TABLE 3. Effect of Oxygen on Ethyl Radical Additionto Cyclic Nitrone 4

				yield $(\%)^{a,b}$		
entry	solvent	$T\left(^{\circ}\mathrm{C}\right)$	$O_2\left(equiv\right)$	9a	10a	11a
$egin{array}{c} 1^c \ 2^c \ 3^c \end{array}$	$\begin{array}{c} CH_2Cl_2\\ CH_2Cl_2\\ CH_2Cl_2\end{array}$	$^{+20}_{+20}_{+20}$	$0.05 \\ 5 \\ 50$	$65 \\ 40 \\ 26$	9 18 38	trace trace trace

 a Isolated yield. b Diastereoselectivities of **9a** and **10a** were >95% de. c Reactions of **4** were carried out with Et₃B (5.0 equiv) under Ar atmosphere.

SCHEME 6

 CH_2Cl_2 at -78 °C for 2 h, though the ethylated nitrone **11a** was still obtained in 16% yield (entry 5).²⁷

We next examined the effect of oxygen on the ratio of ethylated product **9a** to diethylated product **10a**. After a solution of **4** in CH₂Cl₂ was strictly degassed, Et₃B was added to the reaction mixture under Ar and O₂ atmosphere (Table 3). In the presence of a catalytic amount of O₂, the radical reaction gave ethylated product **9a** in 65% yield along with only 9% yield of diethylated product **10a** (entry 1). On the other hand, the undesired formation of **10a** dramatically increased in the presence of an excess amount of oxygen probably due to the accumulation of ethyl radical generated from Et₃B and O₂ (entries 2 and 3). These results indicated that the radical chain process proceeded effectively in the presence of a catalytic amount of O₂ as a result of the suppressed formation of the undesired diethylated product **10a**.

The absolute configuration of **9a** was assigned to be R by converting the product **9a** into authentic *N*-Cbz-amino acid **13**.²⁸ The reductive cleavage of the N–O bond of **9a** with Mo(CO)₆ gave the amine **12** in 84% yield. Subsequent hydrogenolysis of **12** in the presence of Pd(OH)₂ followed by treatment with CbzCl afforded the enantiomerically pure (*R*)-*N*-Cbz-amino acid **13** without any loss of optical purity (Scheme 6).

FIGURE 1. Stereochemical feature of radical addition to nitrone 4.

SCHEME 7

 TABLE 4. Alkyl Radical Addition to Cyclic Nitrone 4

			yield	$(\%)^a$	selectivity	
entry	conditions	product	9b-d	9a	of $\mathbf{9b} - \mathbf{d}^{\check{b}}$	
1^c	<i>i</i> -PrI (90 equiv) in benzene	9b	60	18	>95% de	
2^d	<i>i</i> -PrI:benzene (3:1)	9b	82	trace	>95% de	
3^d	c-Hexyl I:benzene (3:1)	9c	72	3	>95% de	
4^d	c-Pentyl I:benzene (3:1)	9d	72	12	>95% de	

^{*a*} Isolated yield; a small amount of alkylated nitrones was formed. ^{*b*} Diastereoselectivities were determined by ¹H NMR analysis. ^{*c*} Reaction of **4** was carried out with *i*-PrI (90 equiv) and Et₃B (2.5 equiv) in boiling benzene. ^{*d*} Reactions of **4** were carried out with Et₃B (2.5 equiv) in boiling RI–benzene (3:1, v/v).

The stereochemical features of this reaction can be rationalized in terms of steric control as shown in Figure 1. The alkyl radical addition takes place predominantly from the less hindered *re*-face to avoid the steric interaction with the phenyl group.

Next, we explored the alkyl radical addition to nitrone 4 under the iodine atom-transfer reaction conditions (Scheme 7). The isopropyl radical addition to nitrone 4 proceeded smoothly by using isopropyl iodide (90 equiv) and Et₃B (2.5 equiv) in boiling benzene, to give the desired isopropylated product **9b** in 60% yield, accompanied by an 18% yield of the ethylated product **9a** (Table 4, entry 1). The predominant formation of the isopropylated product **9b** was observed in the reaction with Et₃B (2.5 equiv) in boiling RI-benzene (3:1, v/v), although a trace amount of **9a** was formed (entry 2). Excellent diastereoselectivities were observed in the reactions with cyclohexyl and cyclopentyl radicals (entries 3 and 4).

The reaction of acyclic nitrone **5** was studied by using triethylborane as an ethyl radical source (Scheme 8). In the case of acyclic nitrone **5**, the predominant formation of diethylated product **15** was observed in organic solvents (Table 5, entries 1 and 2). To a solution of **5** in benzene was added a 1.0 M solution of Et_3B in hexane (5.0 equiv) and then the reaction mixture was stirred at 20 °C. The diethylated product **15** was obtained in 61% yield with 34% de, accompanied by a 14% yield of the

⁽²⁷⁾ The stannyl radical, which is generated by the reduction of nitroxide radical with tin hydride, is known to dimerize to form the corresponding ditin compound. See: Fossey, J.; Lefort, D.; Sorba, J. *Free Radicals in Organic Chemistry*; translated by J. Lomas; John Wiley & Sons: New York, 1995.

 ⁽²⁸⁾ Saksena, A. K.; Lovey, R. G.; Girijavallabhan, V. M.; Ganguly,
 A. K.; McPhail, A. T. J. Org. Chem. 1986, 51, 5024.

TABLE 5. Ethyl Radical Addition to Acyclic Nitrone 5^a

		Lewis	yield $(\%)^{b,c}$				
entry	solvent	acid	$T(^{\circ}\mathrm{C})$	14	15		
1	benzene	none	20	14 (22% de)	61 (34% de)		
2	CH_2Cl_2	none	20	15 (31% de)	53 (31% de)		
3	$H_2O-EtOH$	none	20	44 (30% de)	27 (21% de)		
4^d	CH_2Cl_2	$TiCl_4$	20	8 (27% de)	0		
5^d	CH_2Cl_2	Cu(OTf) ₂	20	13 (23% de)	43 (33% de)		
6^d	CH ₂ Cl ₂	Cu(OTf) ₂	-78	16 (20% de)	54 (4% de)		

 a Reactions of **5** were carried out with Et₃B (5.0 equiv). b Isolated yield of diastereomeric mixture. c Diastereoselectivities were determined by ¹H NMR analysis. d Lewis acid (1.0 equiv) was employed.

FIGURE 2. Isomerization of E- and Z-isomers.

ethylated product 14 (entry 1). A similar result was obtained in the reaction of 5 in CH_2Cl_2 (entry 2). In contrast to acyclic nitrone 2, the acyclic nitrone 5 was stable even in aqueous media. The radical addition to 5 in H₂O-MeOH gave 44% vield of ethylated product 14 and 27% yield of diethylated product 15 (entry 3). The absolute configuration of 14 was assigned to be R by converting the major diastereoisomer of 14 into cyclic product 9a. Deprotection of the TBDMS group followed by lactonization with *p*-TsOH gave the cyclic (R)-product **9a**. The acyclic nitrone **5** existed as an E/Z mixture with a ratio of 5:7 in CDCl₃, which was determined by ¹H NMR. Isomerization of the *E*-isomer led exclusively to the Z-isomer in the presence of $TiCl_4$ or $Cu(OTf)_2$ as observed by ¹H NMR (Figure 2).²⁹ An improvement in the diastereoselectivity was expected in the presence of these Lewis acids; however, only moderate diastereoselectivities were obtained (entries 4-6).

Diastereoselective Radical Addition to BIGN. *N*-Benzyl-2.3-*O*-isopropylidene-D-glyceraldehyde nitrone (BIGN) **16** is known to be a reactive substrate for 1,3-

 TABLE 6. Radical Addition to Acyclic Nitrone 16

entry	solvent	Lewis acid	<i>T</i> (°C)	yield (%) ^a 17a 18a		selectivity of 18a ^b anti:syn
$egin{array}{c} 1^c \ 2^c \ 3^d \end{array}$	$\begin{array}{c} CH_2Cl_2\\ benzene\\ CH_2Cl_2 \end{array}$	$\begin{array}{c} none \\ none \\ Mg(ClO_4)_2 \end{array}$	20 reflux 0	trace 18 trace	$46 \\ 54 \\ 47$	85:15 82:18 3:97

^{*a*} Isolated yield. ^{*b*} Selectivities of anti and syn isomers were determined by ¹H NMR analysis. ^{*c*} Reactions of **16** were carried out with Et₃B (5.0 equiv). ^{*d*} Reaction of **16** was carried out with Et₃B (5.0 equiv) in the presence of Mg(ClO₄)₂ (1.0 equiv).

dipolar cycloaddition reactions³⁰ and nucleophilic additions of organometallic reagents.³¹ However, radical reaction of 16 has not been explored. We finally studied the diastereoselective radical addition to BIGN 16 (Scheme 9). In the absence of Lewis acid, the ethyl radical addition to 16 in CH₂Cl₂ proceeded smoothly to give an 85:15 anti/ syn mixture of diethylated product 18a in 46% yield (Table 6, entry 1). The reaction of 16 in boiling benzene proceeded with better chemical efficiency (entry 2). In marked contrast to the radical reaction giving the anti isomer, selective formation of the syn isomer was reported in the reaction of 16 with Grignard reagents.^{31b} Therefore, the effect of Lewis acid on anti/syn selectivity was investigated. As expected, the selective formation of syn isomer 18a was observed in the presence of $Mg(ClO_4)_2$ (entry 3).

In the absence of Lewis acid, dipole–dipole interaction controls the rotamer population and is responsible for the observed stereoselection in radical reaction (Figure 3). Thus, the rotamer **B** having the N–O bond moiety anti to the acetal oxygen atom would be favored in order to minimize the dipole–dipole interaction between these moieties. The syn selectivity observed in the reaction with $Mg(ClO_4)_2$ can be explained by invoking a favorable conformer **C**.

The alkyl radical addition to **16** was carried out in the absence of Lewis acid (Scheme 10). The isopropyl radical addition to **16** also proceeded by using *i*-PrI and Et₃B to give the isopropylated product **17b** and the diisopropylated product **18b** with high diastereoselectivity, respectively. Excellent anti selectivity was also achieved in the reactions with a cyclopentyl radical. It is important to note that anti selectivity in the reaction of **16** with Grignard reagent has been difficult to achieve.

⁽²⁹⁾ Tamura's group reported that tandem transesterification, *E*,*Z*isomerization, and cycloaddition of nitrones proceeded in the presence of titanium tetraisopropoxide. See: (a) Tamura, O.; Yamaguchi, T.; Noe, K.; Sakamoto, M. *Tetrahedron Lett.* **1993**, *34*, 4009. (b) Tamura, O.; Okabe, T.; Yamaguchi, T.; Gotanda, K.; Noe, K.; Sakamoto, M. *Tetrahedron* **1995**, *51*, 107.

⁽³⁰⁾ Merino, P.; Mates, J. A.; Revuelta, J.; Tejero, T.; Chiacchio, U.; Romeo, G.; Iannazzo, D.; Romeo, R. *Tetrahedron: Asymmetry* **2002**, *13*, 173.

^{(31) (}a) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Tetrahedron: Asymmetry **1997**, 8, 3489. (b) Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. Tetrahedron **1998**, 54, 12301. (c) Merino, P.; del Alamo, E. M.; Bona, M.; Franco, S.; Merchan, F. L.; Tejero, T.; Vieceli, O. Tetrahedron Lett. **2000**, 41, 9239. (d) Merino, P.; Franco, S.; Merchan, F. L.; Revuelta, J.; Tejero, T. Tetrahedron Lett. **2002**, 43, 459.

FIGURE 3. Stereochemical feature of radical addition to nitrone 16.

SCHEME 10

Conclusion

We have demonstrated that nitrones are excellent radical acceptors for intermolecular carbon-carbon bond-forming radical reactions. In addition to intermolecular radical reaction of oxime ethers, hydrazones, and N-sulfonylimines, the diastereoselective reaction of nitrones disclosed a broader aspect of the utility of imino radical acceptors for the synthesis of various types of amino compounds.

Experimental Section

(3aR,6S,7aS)-Hexahydro-8,8-dimethyl-1-[[oxide(phenylmethyl)imino]acetyl]-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (2). To a solution of N-benzylhydroxylamine (20 mg, 0.16 mmol) and hemiacetal 1 (50 mg, 0.16 mmol) in CH₂Cl₂ (5 mL) was added CaCl₂ (27 mg, 0.24 mmol) under N₂ atmosphere at room temperature. After being stirred at room temperature for 24 h, the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated at reduced pressure to afford nitrone **2** as a colorless oil (E:Z =1:2). After characterization by ¹H and ¹³C NMR spectra, unstable 2 was immediately subjected to radical reaction. ¹H NMR (CDCl₃) & 7.54-7.22 (5H, m), 5.18 (2/3H, s), 5.01 (1/3H, s), 4.22-3.88 (3H, m), 3.54-3.38 (2H, m), 2.34-1.76 (5H, m), 1.50-1.20 (2H, m), 1.15, 0.97 (each 6/3H, s), 1.08, 0.95 (each 3/3H, s); ¹³C NMR (CDCl₃) δ 158.3, 156.6, 133.1, 131.5, 129.7, 129.5, 129.2, 129.0, 128.8, 128.6, 126.8, 124.7, 73.7, 67.9, 65.0, 64.8, 53.0, 52.9, 48.8, 48.7, 47.9, 47.8, 44.6, 44.5, 38.3, 38.0, 32.8, 32.7, 26.5, 26.4, 20.7, 19.8.

General Procedure for Radical Reaction of 2. To a solution of 2 (0.16 mmol) in benzene (5 mL) or *i*-PrI-benzene (4 mL, 3:1, v/v) were added *i*-PrI (0.48 mL, 4.8 mmol or 1.4 mL, 14 mmol) and Et_3B (1.0 M in hexane, 0.80 mL, 0.80 mmol) in the presence of 20 mL of O₂ under N₂ atmosphere at reflux. After being stirred at the same temperature for 30 min, the reaction mixture was diluted with saturated aqueous NaHCO₃

and then extracted with CHCl₃. The organic phase was dried over $MgSO_4$ and concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 3:1) afforded 3a-c.

(3aR,6S,7aS)-Hexahydro-8,8-dimethyl-1-[3-methyl-1oxo-2-[hydroxy(phenylmethyl)amino]butyl]-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (3a). A colorless oil. IR (CHCl₃) 3568, 2966, 1689 cm⁻¹; ¹H NMR (CDCl₃) δ 7.40– 7.21 (5H, m), 5.70 (1H, br s), 4.21 (1H, d, J = 14 Hz), 4.04 (1H, t, J = 6.5 Hz), 3.93 (1H, d, J = 8.5 Hz), 3.81 (1H, d, J =14 Hz), 3.53, 3.49 (2H, ABq, J = 14 Hz), 2.51–2.43 (1H, m), 2.16 (2H, br d, J = 6 Hz), 1.99–1.85 (3H, m), 1.49–1.35 (2H, m), 1.21, 1.10 (each 3H, d, J = 7 Hz), 1.16, 0.99 (each 3H, s); ¹³C NMR (CDCl₃) δ 174.5, 138.5, 128.6, 128.1, 126.9, 73.3, 65.2, 61.6, 53.3, 48.0, 47.7, 44.6, 38.5, 33.0, 30.5, 26.4, 20.7, 20.3, 20.0, 19.3; HRMS calcd for C₂₂H₃₂N₂O₄S (M⁺) 420.2081, found 420.2087. [α]¹⁸_D +17.4 (c 1.04, CHCl₃).

(3aR,6S,7aS)-Hexahydro-8,8-dimethyl-1-[3-methyl-1oxo-2-[1-methylethoxy(phenylmethyl)amino]butyl]-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (3b). A colorless oil. IR (CHCl₃) 2967, 2928, 1686 cm⁻¹; ¹H NMR (CDCl₃) δ 7.40–7.21 (5H, m), 4.23–4.12 (1H, br m), 4.18, 4.04 (each 1H, d, J = 14 Hz), 4.07–4.01 (1H, br m), 3.47–3.45 (2H, ABq, J = 14 Hz), 3.40–3.30 (1H, br m), 2.24–2.06 (3H, m), 1.95– 1.85 (3H, m), 1.48–1.36 (2H, m), 1.26, 1.04 (each 3H, d, J = 7Hz), 1.15, 0.96 (each 3H, s), 1.00, 0.64 (each 3H, d, J = 6 Hz); ¹³C NMR (CDCl₃) δ 172.8, 139.7, 130.2, 127.8, 126.8, 73.8, 72.9, 65.5, 57.4, 53.2, 47.7, 44.4, 38.6, 33.0, 31.3, 29.7, 26.5, 20.60, 20.57, 20.5, 20.3, 20.0, 19.8; HRMS calcd for C₂₅H₃₈N₂O₄S (M⁺) 462.2550, found 462.2547. [α]¹⁷_D +73.3 (c 0.60, CHCl₃).

(3aR,6S,7aS)-Hexahydro-8,8-dimethyl-1-[1-oxo-2-[hydroxy(phenylmethyl)amino]butyl]-3H-3a,6-methano-2,1-benzisothiazole 2,2-Dioxide (3c). Colorless crystals. Mp 126–129 °C (AcOEt/hexane). IR (CHCl₃) 3569, 2966, 1697 cm⁻¹; ¹H NMR (CDCl₃) δ 7.42–7.21 (5H, m), 5.77 (1H, br s), 4.09 (1H, dd, J = 7.5, 5.5 Hz), 4.08, 3.95 (each 1H, d, J = 14 Hz), 3.98 (1H, t, J = 6.5 Hz), 3.51, 3.46 (2H, ABq, J = 14 Hz), 2.14–1.82 (7H, m), 1.50–1.30 (2H, m), 1.15, 0.98 (each 3H, s), 1.10 (3H, t, J = 7.5, 51, 55, 50, 48.4, 47.8, 44.5, 38.3, 32.8, 26.4, 23.8, 20.7, 19.9, 10.5; HRMS calcd for C₂₁H₃₀N₂O₄S (M⁺) 406.1924, found 406.1921. Anal. Calcd for C₂₁H₃₀N₂O₄S: C, 62.04; H, 7.44; N, 6.89; S, 7.89. Found: C, 62.17; H, 7.62; N, 6.88; S, 7.95. [α]¹⁹_D +20.0 (c 0.69, CHCl₃).

Ethyl Radical Addition to 4 (Table 2, entries 1–3). To a solution of nitrone 4 (50 mg, 0.19 mmol) in CH_2Cl_2 or benzene (5 mL) was added Et_3B (1.0 M in hexane, 0.94 mL, 0.94 mmol) in the presence of 20 mL of O_2 under N_2 atmosphere at +20 or -78 °C or reflux. After being stirred at the same temperature for 2 h, the reaction mixture was concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 3:1, 2-fold developments) afforded **9a**–**11a**.

Ethyl Radical Addition to 4, Using Bu₃SnH (Table 2, entries 4 and 5). To a solution of nitrone 4 (50 mg, 0.19 mmol) in CH_2Cl_2 (5 mL) were added Bu_3SnH (0.060 mL, 0.23 mmol) and Et_3B (1.0 M in hexane, 0.94 mL, 0.94 mmol) in the presence of 20 mL of O_2 under N_2 atmosphere at +20 or -78 °C. After being stirred at the same temperature for 2 h, the reaction mixture was concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 3:1, 3-fold developments) afforded 9a-11a.

Ethyl Radical Addition to 4 under Ar and O₂ Atmosphere (Table 3). A solution of nitrone 4 (50 mg, 0.19 mmol) in CH₂Cl₂ (5 mL) was degassed. To the mixture was added Et₃B (1.0 M in hexane, 0.94 mL, 0.94 mmol) in the presence of 0.05, 5, or 50 equiv of O₂ under Ar atmosphere at +20 °C. After being stirred at the same temperature for 2 h, the reaction mixture was concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 3:1) afforded **9a-11a**. (3*R*,5*R*,6S)-3-Ethyl-4-hydroxy-5,6-diphenyl-2-morpholinone (9a). Colorless crystals. Mp 174–176 °C (AcOEt/hexane). IR (CHCl₃) 3572, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 7.32–7.14 (10H, m), 6.17 (1H, d, *J* = 3.5 Hz), 4.95 (1H, br s), 4.85 (1H, d, *J* = 3.5 Hz), 3.60 (1H, t, *J* = 4.5 Hz), 2.15–2.00 (2H, m), 1.05 (3H, t, *J* = 7.5 Hz); ¹³C NMR (CDCl₃) δ 170.5, 135.8, 131.4, 130.7, 128.4, 128.3, 127.7, 125.4, 78.6, 68.7, 64.3, 22.0, 9.6; HRMS calcd for C₁₈H₁₉NO₃ (M⁺) 297.1364, found 297.1364. Anal. Calcd for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.45; H, 6.41; N, 4.72. [α]²⁶_D –7.0 (*c* 1.00, CHCl₃).

(3*R*,5*R*,6*S*)-4-Ethoxy-3-ethyl-5,6-diphenyl-2-morpholinone (10a). A colorless oil. IR (CHCl₃) 1743 cm⁻¹; ¹H NMR (CDCl₃) δ 7.35–7.14 (6H, m), 6.16 (1H, br d, J = 3.5 Hz), 4.86 (1H, d, J = 3.5 Hz), 4.04–3.90 (2H, m), 3.56 (1H, t, J = 4.5 Hz), 2.10–1.96 (2H, m), 1.26 (3H, t, J = 7.5 Hz), 1.06 (3H, t, J = 7 Hz); ¹³C NMR (CDCl₃) δ 170.8, 136.0, 132.1, 130.7, 128.3, 128.1, 127.6, 125.4, 78.8, 68.4, 65.6, 63.4, 21.9, 14.1, 9.8; HRMS calcd for C₂₀H₂₃NO₃ (M⁺) 325.1676, found 325.1688. [α]²⁹_D –59.1 (c 1.10, CHCl₃).

(5*R*,6S)-3-Ethyl-5,6-dihydro-5,6-diphenyl-2*H*-1,4-oxadin-2-one 4-Oxide (11a). Colorless crystals. Mp 158–160 °C (AcOEt/hexane). IR (CHCl₃) 3033, 1721, 1549 cm⁻¹; ¹H NMR (CDCl₃) δ 7.32–7.15 (6H, m), 7.03 (2H, m), 6.82 (2H, m), 6.05 (1H, d, *J* = 3.3 Hz), 5.15 (1H, d, *J* = 3.3 Hz), 3.02–2.80 (2H, m), 1.26 (3H, t, *J* = 7.5 Hz); ¹³C NMR (CDCl₃) δ 159.6, 140.6, 132.5, 129.4, 129.2, 128.9, 128.5, 128.3, 127.6, 126.0, 78.1, 77.2, 19.1, 9.1; HRMS calcd for C₁₈H₁₇NO₃ (M⁺) 295.1207, found 295.1222. Anal. Calcd for C₁₈H₁₇NO₃ ¹/₄H₂O: C, 72.10; H, 5.88; N, 4.67. Found: C, 72.18; H, 5.85; N, 4.71. [α]²⁷_D +573.0 (*c* 1.01, CHCl₃).

General Procedure for Alkyl Radical Addition to 4. To a solution of nitrone 4 (50 mg, 0.19 mmol) in RI-benzene (5 mL, 3:1, v/v) was added Et_3B (1.0 M in hexane, 0.47 mL, 0.47 mmol) in the presence of 20 mL of O₂ under N₂ atmosphere at reflux. After being stirred at the same temperature for 30 min, the reaction mixture was concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 2:1) afforded the alkylated products **9b**-**d** and the ethylated product **9a**.

(3*R*,5*R*,6*S*)-4-Hydroxy-3-isopropyl-5,6-diphenyl-2-morpholinone (9b). Colorless crystals. Mp 104–106 °C (AcOEt/hexane). IR (CHCl₃) 3569, 1740 cm⁻¹; ¹H NMR (CDCl₃) δ 7.27–7.14 (10H, m), 5.98 (1H, d, *J* = 3 Hz), 4.98 (1H, br s), 4.76 (1H, d, *J* = 3 Hz), 3.63 (1H, d, *J* = 3 Hz), 2.46 (1H, m), 1.21, 1.15 (each 3H, d, *J* = 7 Hz); ¹³C NMR (CDCl₃) δ 170.0, 135.4, 131.2, 130.7, 128.4, 128.3, 127.9, 125.7, 79.2, 70.6, 69.7, 31.0, 19.5, 18.7; HRMS calcd for C₁₉H₂₁NO₃: C, 73.29; H, 6.80; N, 4.50. Found: C, 73.38; H, 6.81; N, 4.56. [α]²⁸_D +51.6 (*c* 0.61, CHCl₃).

(3*R*,5*R*,6S)-3-Cyclohexyl-4-hydroxy-5,6-diphenyl-2-morpholinone (9c). Colorless crystals. Mp 152–155 °C (AcOEt/hexane). IR (CHCl₃) 3569, 1730 cm⁻¹; ¹H NMR (CDCl₃) δ 7.28–7.11 (10H, m), 5.94 (1H, d, J = 3.5 Hz), 4.94 (1H, br s), 4.73 (1H, d, J = 3.5 Hz), 3.66 (1H, d, J = 2.5 Hz), 2.15–1.16 (11H, m); ¹³C NMR (CDCl₃) δ 170.3, 135.4, 131.4, 130.6, 128.4, 128.2, 127.9, 125.8, 79.2, 70.8, 69.8, 41.6, 29.7, 29.5, 26.7, 26.2; HRMS calcd for C₂₂H₂₅NO₃ (M⁺) 351.1833, found 351.1833. Anal. Calcd for C₂₂H₂₅NO₃: C, 75.19; H, 7.17; N, 3.99. Found: C, 74.89; H, 7.09; N, 3.95. [α]²⁸_D +19.7 (c 0.60, CHCl₃).

(3*R*,5*R*,6S)-3-Cyclopentyl-4-hydroxy-5,6-diphenyl-2-morpholinone (9d). Colorless crystals. Mp 161–164 °C (AcOEt/hexane). IR (CHCl₃) 3569, 1741 cm⁻¹; ¹H NMR (CDCl₃) δ 7.27–7.16 (10H, m), 6.18 (1H, d, J = 3.5 Hz), 5.10 (1H, br s), 4.80 (1H, d, J = 3.5 Hz), 3.68 (1H, d, J = 5.5 Hz), 2.60–2.51 (1H, m), 2.08–1.40 (8H, m); ¹³C NMR (CDCl₃) δ 170.6, 136.0, 132.3, 130.4, 128.4, 128.3, 127.7, 125.6, 78.3, 69.1, 66.9, 41.5, 30.4, 29.4, 25.4, 24.9; HRMS calcd for C₂₁H₂₃NO₃ (M⁺) 337.1677, found 337.1701. Anal. Calcd for C₂₁H₂₃NO₃: C, 74.75; H, 6.87; N, 4.15. Found: C, 74.48; H, 6.82; N, 4.14. [α]²⁸_D +17.5 (*c* 1.00, CHCl₃).

General Procedure for Ethyl Radical Addition to 5. To a solution of nitrone 5 (50 mg, 0.12 mmol) in benzene, CH_2Cl_2 , or $H_2O-EtOH$ (3:2, v/v) (5 mL) was added Et_3B (1.0 M in hexane, 0.59 mL, 0.59 mmol) in the presence of 20 mL of O_2 under N_2 atmosphere at 20 °C. After being stirred at the same temperature for 90 min, the reaction mixture was diluted with saturated aqueous NaHCO₃ and then extracted with CH_2Cl_2 . The organic phase was dried over MgSO₄ and concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 5:1) afforded 14–15.

[(1R,2S)-N-(2-tert-Butyldimethylsilyloxy-1,2-diphenylethyl)-N-hydroxy]-2-ethylglycine Ethyl Ester (14). Major isomer: A colorless oil. IR (CHCl₃) 3556, 1730 cm⁻¹; ¹H NMR $(CDCl_3) \delta 7.40-7.18 (10H, m), 5.48 (1H, s), 5.32 (1H, d, J =$ 6.9 Hz), 4.05–3.91 (2H, m), 3.87 (1H, d, J = 6.9 Hz), 3.24 (1H, t, J = 6 Hz), 1.73–1.62 (2H, m), 1.18 (3H, t, J = 7.2 Hz), 0.68 (9H, s), 0.64 (3H, t, J = 7.5 Hz), -0.18, -0.30 (each 3H, s);¹³C NMR (CDCl₃) δ 173.2, 143.7, 136.4, 130.5, 127.5, 127.4, 127.0, 75.6, 74.9, 67.3, 60.3, 25.5, 21.4, 17.9, 14.0, 9.6, -4.7,-5.5; HRMS calcd for C₂₆H₄₀NO₄Si (M + H⁺) 458.2724, found 458.2721. $[\alpha]^{23}{}_{\rm D}$ +56.2 (c 1.26, CHCl_3). Minor isomer: A colorless oil. IR (CHCl₃) 3581, 2958, 2931, 2857, 1703, 1472, 1454 cm⁻¹; ¹H NMR (CDCl₃) & 7.30-6.84 (10H, m), 5.78 (1H, s), 5.61 (1H, d, J = 2.7 Hz), 4.15–4.00 (2H, m), 3.95 (1H, d, J= 2.7 Hz), 3.17 (1H, dd, J = 9.5, 5.5 Hz), 2.06-1.62 (2H, m), 1.16 (3H, t, J = 7.2 Hz), 1.00 (3H, t, J = 7.2 Hz), 0.90 (9H, s), -0.14, -0.16 (each 3H, s); ¹³C NMR (CDCl₃) δ 174.0, 142.9, 135.5, 130.7, 127.5, 127.2, 127.0, 126.7, 126.6, 77.8, 73.8, 65.4, 60.2, 25.8, 23.6, 18.2, 14.1, 10.9, -4.9; HRMS calcd for C₂₆H₄₀- $NO_4Si (M + H^+) 458.2724$, found 458.2744. [α]²²_D +38.9 (c 1.47, CHCl₃).

[(1R,2S)-N-(2-tert-Butyldimethylsilyloxy-1,2-diphenylethyl)-N-ethoxy]-2-ethylglycine Ethyl Ester (15). A colorless oil (a 2:1 mixture of diastereoisomers). IR (CHCl₃) 2958, 1732 cm⁻¹; ¹H NMR (CDCl₃) & 7.30-6.84 (10H, m), 5.29 (1H, d, J = 4.8 Hz), 4.31 - 4.00 (2 + 1/3 + 1H, m), 3.90 - 3.62 (4/3H, m)m), 3.52 (2/3H, dd, J = 9.6, 4.5 Hz), 3.27 (1/3H, t, J = 7.5 Hz), 2.04-1.72 (2H, m), 1.37 (6/3H, t, J = 6.9 Hz), 1.30 (6/3H, t, J= 6.9 Hz), 1.03 (3H, t, J = 6.9 Hz), 0.95 (9/3H, s), 0.89 (18/3H, s), 0.88 (6/3H, t, J = 7.5 Hz), 0.11, -0.34 (each 3/3H, s), 0.06, -0.30 (each 6/3H, s); ¹³C NMR (CDCl₃) δ 171.6, 170.8, 142.9, 136.8, 136.0, 131.7, 131.3, 128.3, 127.7, 127.5, 127.3, 127.2, 127.1, 127.0, 126.82, 126.77, 126.6, 77.2, 76.7, 75.6, 74.9, 74.8, 71.2, 70.5, 67.6, 60.1, 59.8, 53.4, 25.8, 25.7, 23.4, 18.1, 18.0, 14.24, 14.20, 13.7, 10.8, 10.6, -3.8, -4.2, -5.1, -5.3; HRMS calcd for $C_{28}H_{43}NO_4Si~(M^+)$ 485.2959, found 485.2940. [α]²¹_D $+68.5 (c \ 1.09, \text{CHCl}_3).$

General Procedure for Ethyl Radical Addition to 16. To a solution of nitrone 16 (50 mg, 0.21 mmol) and Mg(ClO₄)₂ (47 mg, 0.21 mmol or none) in CH₂Cl₂ or benzene (5 mL) was added Et₃B (1.0 M in hexane, 1.1 mL, 1.1 mmol) in the presence of 20 mL of O₂ under N₂ atmosphere at 20 or -78 °C or reflux. After being stirred at the same temperature for 2–4 h, the reaction mixture was diluted with saturated aqueous NaHCO₃ and then extracted with CH₂Cl₂. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 10:1, 2-fold developments) afforded 17a and 18a.

(3S,4S)-1,2,3-Trideoxy-3-[hydroxy(phenylmethyl)amino]-4,5-O-(1-methylethylidene)pentitol (*anti*-17a) and (3R,4S)-1,2,3-Trideoxy-3-[hydroxy(phenylmethyl)amino]-4,5-O-(1-methylethylidene)pentitol (*syn*-17a). A colorless oil (a 6:1 mixture of *anti*-17a and *syn*-17a). IR (CHCl₃) 3576, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.37-7.22 (5H, m), 5.20-4.94 (1H, br s), 4.50-4.40 (1/7H, m), 4.32 (6/7H, q, J = 7 Hz), 4.14–4.32 (4H, m), 2.83–2.74 (1/7H, m), 2.70–2.60 (6/7H, m), 1.92–1.56 (2H, m), 1.43, 1.39 (each 3/7H, s), 1.41, 1.36 (each 18/7H, s), 1.08 (18/7H, t, J = 7.5 Hz), 1.02 (3/7H, t, J = 7 Hz); ¹³C NMR (CDCl₃) δ 138.3, 129.4, 128.3, 127.2, 108.7, 76.0, 69.7, 68.6, 60.1, 26.6, 25.5, 19.6, 12.1; HRMS calcd for C₁₅H₂₃NO₃ (M⁺) 265.1677, found 265.1668. [α]¹⁸_D -4.7 (*c* 0.96, CHCl₃).

(3S,4S)-1,2,3-Trideoxy-3-[ethoxy(phenylmethyl)amino]-4,5-O-(1-methylethylidene)pentitol (*anti*-18a). A colorless oil. IR (CHCl₃) 2984, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.36–7.22 (5H, m), 4.28 (1H, q, J = 7 Hz), 4.16 (1H, dd, J = 6.5, 8.5 Hz), 3.84 (2H, s), 3.77 (1H, dd, J = 7, 8.5 Hz), 3.39–3.28 (2H, m), 2.74 (1H, td, J = 7, 5 Hz), 1.79–1.68 (2H, m), 1.38, 1.36 (each 3H, s), 1.11 (3H, t, J = 7.5 Hz), 0.88 (3H, t, J = 7 Hz); ¹³C NMR (CDCl₃) δ 138.7, 129.5, 128.0, 127.0, 108.6, 76.1, 69.1, 68.4, 58.0, 26.6, 25.5, 20.3, 13.9, 12.3; HRMS calcd for C₁₇H₂₇NO₃ (M⁺) 293.1989, found 293.1985. [α]²³_D = 13.6 (c 1.88, CHCl₃).

(3*R*,4S)-1,2,3-Trideoxy-3-[ethoxy(phenylmethyl)amino]-4,5-*O*-(1-methylethylidene)pentitol (*syn*-18a). A colorless oil. IR (CHCl₃) 2983, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.40–7.22 (5H, m), 4.54 (1H, ddd, J = 8, 6.5, 4.5 Hz), 4.05, 3.98 (2H, ABq, J = 13 Hz), 4.01, 3.80 (each 1H, d, J = 8 Hz), 3.53–3.41 (2H, m), 2.78 (1H, dt, J = 9, 4.5 Hz), 1.62–1.44 (2H, m), 1.41, 1.38 (each 3H, s), 1.00 (3H, t, J = 7 Hz), 0.95 (3H, t, J = 7 Hz); ¹³C NMR (CDCl₃) δ 138.6, 129.5, 128.0, 127.0, 107.7, 74.3, 69.1, 66.6, 66.4, 59.8, 26.4, 25.2, 19.4, 13.9, 11.9; HRMS calcd for C₁₇H₂₇NO₃ (M⁺) 293.1989, found 293.1985. [α]²¹_D +42.0 (*c* 1.41, CHCl₃).

General Procedure for Alkyl Radical Addition to 16. To a solution of nitrone 16 (50 mg, 0.21 mmol) in benzene (5 mL) were added RI (19 mmol) and Et₃B (1.0 M in hexane, 0.52 mL, 0.52 mmol) in the presence of 20 mL of O_2 under N_2 atmosphere at reflux. After being stirred at the same temperature for 2 h, the reaction mixture was diluted with saturated aqueous NaHCO₃ and then extracted with CHCl₃. The organic phase was dried over MgSO₄ and concentrated under reduced pressure. Purification of the residue by preparative TLC (hexane/AcOEt 5:1) afforded 17b,c and 18b,c.

(3S,4S)-1,2,3-Trideoxy-3-[hydroxy(phenylmethyl)amino]-2-methyl-4,5-O-(1-methylethylidene)pentitol (*anti*-17b) and (3R,4S)-1,2,3-Trideoxy-3-[hydroxy(phenylmethyl)amino]-2-methyl-4,5-O-(1-methylethylidene)pentitol (*syn*-17b). A white solid oil (a 9:1 mixture of *anti*-17b and *syn*-17b). IR (CHCl₃) 3577, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.35–7.25 (5H, m), 4.64 (1H, br s), 4.47 (1/10H, q, J = 7 Hz), 4.46 (9/10H, q, J = 7 Hz), 4.16–4.11 (1H, m), 3.93–3.89 (3H, m), 2.67 (9/10H, dd, J = 7, 3.5 Hz), 2.63(1/10H, dd, J = 7, 4 Hz), 2.33–2.26 (1H, m), 1.42, 1.37 (each 3H, s), 1.11, 1.09 (each 27/10H, d, J = 7 Hz), 1.10, 1.08 (each 3/10H, d, J = 7 Hz); ¹³C NMR (CDCl₃) δ 138.5, 129.2, 129.1, 128.6, 128.5, 128.3, 127.3, 108.4, 74.5, 74.4, 72.3, 68.7, 62.0, 61.9, 27.1, 26.7, 25.3, 21.4, 19.8; HRMS calcd for C₁₆H₂₅NO₃ (M⁺) 279.1833, found 279.1834.

(2S,3S)-3-Cyclopentyl-3-[hydroxy(phenylmethyl)amino]-1,2-O-(1-methylethylidene)-1,2-propanediol (*anti*-17c) and (2S,3R)-3-Cyclopentyl-3-[hydroxy(phenylmethyl)- **amino]-1,2-O-(1-methylethylidene)-1,2-propanediol** (syn-17c). A white solid (a 9:1 mixture of anti-17c and syn-17c). IR (CHCl₃) 3574, 1454 cm⁻¹; ¹H NMR (CDCl₃) δ 7.42–7.22 (5H, m), 5.41 (1/10H, br s), 5.19 (9/10H, br s), 4.54–4.49 (1/10H, m), 4.47 (9/10H, q, J = 6.5 Hz), 4.10 (9/10H, dd, J = 8, 6.5 Hz), 3.94, 3.86 (18/10H, ABq, J = 13.5 Hz), 3.86–3.60 (2/10H+1H, m), 2.83 (1/10H, dd, J = 8.5, 5 Hz), 2.74 (9/10H, dd, J = 7, 6 Hz), 2.26–2.20 (1H, m), 1.94–1.85 (2H, m), 1.72–1.30 (6H, m), 1.43, 1.37 (each 3H, s); ¹³C NMR (CDCl₃) δ 138.7, 129.3, 128.3, 127.2, 108.7, 74.9, 71.1, 68.5, 60.4, 39.5, 31.5, 30.5, 26.7, 25.4, 25.3, 24.2; HRMS calcd for C₁₈H₂₈NO₃ (M + H⁺) 306.2068, found 306.2069.

(3S,4S)-1,2,3-Trideoxy-2-methyl-3-[1-methylethoxy-(phenylmethyl)amino]-4,5-O-(1-methylethylidene)pentitol (anti-18b). A colorless oil. IR (CHCl₃) 2974, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.34–7.22 (5H, m), 4.43–4.35 (1H, br m), 4.18–4.14 (1H, m), 3.86, 3.83 (2H, ABq, J = 13.5 Hz), 3.75–3.66 (1H, br m), 3.56–3.48 (1H, m), 2.61 (1H, br m), 2.33–2.25 (1H, m), 1.35, 1.33 (each 3H, s), 1.16, 1.08 (each 3H, d, J = 7 Hz), 0.95 (3H, br s), 0.90 (3H, d, J = 6 Hz); ¹³C NMR (CDCl₃) δ 138.4, 129.9, 128.0, 127.2, 121.3, 108.5, 74.4, 73.5, 69.5, 59.3, 26.6, 26.4, 25.5, 22.6, 21.5, 21.4, 19.8; HRMS calcd for C₁₉H₃₁NO₃ (M⁺) 321.2303, found 321.2305. [α]¹⁸_D –4.1 (c 1.58, CHCl₃).

(2S,3S)-3-Cyclopentyl-3-[cyclopentyloxy(phenylmethyl)amino]-1,2-O-(1- methylethylidene)-1,2-propanediol (anti-18c). A colorless oil. IR (CHCl₃) 3032, 1455 cm⁻¹; ¹H NMR (CDCl₃) δ 7.38–7.24 (5H, m), 4.46–4.38 (1H, br m), 4.16 (1H, dd, J = 8.5, 6.5 Hz), 3.87, 3.72 (each 1H, d, J = 13.5 Hz), 3.84– 3.78 (1H, br m), 3.76–3.70 (1H, br m), 2.88 (1H, t, J = 6.5 Hz), 2.25–2.15 (1H, br m), 2.00–1.20 (16H, m), 1.38, 1.37 (each 3H, s); ¹³C NMR (CDCl₃) δ 138.9, 129.9, 129.8, 127.94, 127.92, 127.0, 121.3, 108.5, 82.9, 69.5, 69.3, 57.7, 39.8, 31.9, 31.6, 31.5, 30.6, 26.6, 25.6, 25.4, 24.1, 23.3, 23.1; HRMS calcd for C₂₃H₃₅NO₃ (M⁺) 373.2615, found 373.2629. [α]¹⁶_D –7.6 (c 1.24, CHCl₃).

Acknowledgment. This work was supported in part by Grant-in-Aid for Scientific Research (B) (T.N.) and for Young Scientists (B) (M.U. and H.M.) from the Ministry of Education, Culture, Sports, Science and the Science Research Promotion Fund of the Japan Private School Promotion Foundation for research grants.

Supporting Information Available: Experimental procedure and characterization data for compounds 1, 4, 5, 7, 12, 13, and 16, and ¹H and ¹³C NMR spectra of all obtained compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050603Z